US009158802B2

a2 United States Patent 10) Patent No.: US 9,158,802 B2
Gao et al. (45) Date of Patent: Oct. 13,2015
(54) DATABASE PARTITION MANAGEMENT (56) References Cited
(71) Applicant: Teradata US, Inc., Dayton, OH (US) U.S. PATENT DOCUMENTS
. . 8,055,848 B2* 11/2011 Aciicmezetal. 711/125
(72) Inventors: Like Gao, San Diego, CA (US); Yu 8,560,584 B2 10/2013 Gao efal.
Long, San Diego, CA (US); Congnan 2004/0199473 Al* 10/2004 Birkestrand et al. 705/64
Luo, San Diegoj CA (US), Judy w“, 2006/0075207 Al* 4/2006 Togawa etal. 711/202
: M 2006/0242442 Al* 10/2006 Armstronget al. 713/400
San Dicgo, CA (US); Michael Leon 2008/0098045 Al 4/2008 Radhakrishnan et al.
Reed, San Diego, CA (US) 2008/0282057 Al 11/2008 Layden et al.
2011/0320419 Al* 12/2011 Johnston et al. 707/703
(73) Assignee: Teradata US, Inc., Dayton, OH (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this “U.S. Appl. No. 12/968,736, Non Final Office Action mailed Feb. 8,
patent is extended or adjusted under 35 20137, 9 pgs.
U.S.C. 154(b) by 0 days. “U.S. Appl. No. 12/968,736, Response filed May 8, 2013 to Non

Final Office Action mailed Feb. 8, 2013, 8 pgs.

“Partitioning Enhancements in Oracle Database 11g Release 17,
[Online]. Retrieved from the Internet: <URL: http://wwvv.oracle-
base.com/articles/1 1g/PartitioningEnhancements_ 11gR1.php>,

(21) Appl. No.: 14/041,545

(22) Filed: Sep. 30, 2013 (Accessed Oct. 8, 2010), 10 pgs.
“U.S. Appl. No. 12/968,736, Notice of Allowance mailed Jun. 14,
(65) Prior Publication Data 2013”, 6 pgs.

US 2014/0032614 A1 Jan. 30, 2014 # cited by examiner

Primary Examiner — Sana Al Hashemi

Related U.S. Application Data (74) Attorney, Agent, or Firm — Schwegman Lundberg &
W , PA.
(62) Division of application No. 12/968,736, filed on Dec. OesSher
15, 2010, now Pat. No. 8,560,584. (57 ABSTRACT
Apparatus, systems, and methods may operate to receive a
51) Imt.CL request to move at least a portion of a database table stored on
q p
GOG6F 17/30 (2006.01) a tangible medium from a current partition to a history parti-
(52) U.S.CL tion, wherein the database table is partitioned into physical
CPC ... GO6F 17/30339 (2013.01); GO6F 17/39306 partitions according to a selected mapping update frequency.
(2013.01) In response to receiving the request, activities may include
(58) Field of Classification Search modifying a logical partitioning of the database table by
USPC 707/687. 692. 703. 705. 713. 722. 736 updating a mapping of the physical partitions to logical par-
""""" T T L0758 titions. Other apparatus, systems, and methods are disclosed.
See application file for complete search history. 20 Claims, 13 Drawing Sheets
/— 1160\ Dﬁv D‘JSJPA&Y
J ROWS 118 -[
1144
Nc%g 1 N(J;II%Z_ 2
= N
PAReI:I\-TL\CE)ﬁSJAOSNgNLY S Nog_gfﬂ
HISTORY ROWS? ‘g STJOJR%;E
Py Rl
o] O IPE
937 1102
JOST RECENT DATA TABLE b 1152 — NOPEN | 0
PARTITION HAS ANY
HISTORY ROWS? PROCESSING]
1121
DEVICE |
COMBINE o1 1142
PARTITIONS AND UPDATE MAPPING 945 1128 DISPLAY
CSE':IE‘I:;‘W {BLCCK WRITES) - RECEPTION ’\/1 148
e e
963 [PROCESSING]

INCREASE UPDATE
FREQUENCY

1100 1100

U.S. Patent Oct. 13, 2015 Sheet 1 of 13 US 9,158,802 B2
Logical Condition
Partition
Number
1 END(TTCOL)>— CURRENT_TIMESTAMP 110
2 NO CASE

FiG. 1

Physical
Partition
Number

Condition

Logical Partition Number

1

END(TTCOL)>= ‘2009-09-07 16:00:00.000000’
&&

END(TTCOL)< *2009-09-07 16:00:00.000000° +
INTERVAL *1° DAY

END(TTCOL)>= *2009-09-07 16:00:00.000000’
+ INTERVAL ‘1’ DAY &&

END(TTCOL)< *2009-09-07 16:00:00.000000° +
INTERVAL “2° DAY

END(TTCOL)>= ‘2009-09-07 16:00:00.000000’
+ INTERVAL ‘2’ DAY &&

END(TTCOL)< *2009-09-07 16:00:00.000000° +
INTERVAL ‘3’ DAY

END(TTCOL)>= 2009-09-07 16:00:00.000000’
+ INTERVAL ‘3’ DAY &&

END(TTCOL)< *2009-09-07 16:00:00.000000’ +
INTERVAL ‘4* DAY

END(TTCOL)>= ‘2009-09-07 16:00:00.000000’
+ INTERVAL ‘4’ DAY

FIG. 2

U.S. Patent Oct. 13, 2015 Sheet 2 of 13 US 9,158,802 B2

/ 330

Physical Condition Logical Partition Number

Partition

Number

1 END(TTCOL)>= <2009-09-07 16:00:00.000000' | 2 @change to from 1 to 2
&&

END(TTCOL)< ‘2009-09-07 16:00:00.000000" -
INTERVAL ‘1° DAY

2 END(TTCOL)>= *2009-09-07 16:00:00.000000’ | 1 = don’t change partition.
+ INTERVAL ‘1’ DAY &&

END(TTCOL)< ‘2009-09-07 16:00:00.000000°
INTERVAL ‘2’ DAY

3 END(TTCOL)>= *2009-09-07 16:00:00.000000" | 1
+ INTERVAL ‘2’ DAY &&

END(TTCOL)< *2009-09-07 16:00:00.000000" -
INTERVAL ‘3’ DAY

4 END(TTCOL)>= ‘2009-09-07 16:00:00.000000" | 1
+ INTERVAL ‘3’ DAY &&

END(TTCOL)< ‘2009-09-07 16:00:00.000000" -
INTERVAL ‘4’ DAY

5 END(TTCOL)> °2009-09-07 16:00:00.000000" | 1
+INTERVAL ‘4" DAY

FIG. 3

Physical Condition

Partition Logical Partition Number

Number

1 END(TTCOL)>= <2009-09-7 16:00:00.000000° | 2 / 442
&&
END(TTCOL)< ‘2009-09-12 17:00:00.000000’

2 END(TTCOL)>= *2009-09-12 17:00:00.000000° | 1 A
&&

END(TTCOL)< <2009-09-12 17:00:00.000000’
+ INTERVAL ‘1’ DAY

3 END(TTCOL)>= 2009-09-12 17:00:00.000000° | 1
+ INTERVAL ‘1’ DAY &&
END(TTCOL)< 2009-09-12 17:00:00.000000° > 444
+ INTERVAL ¢2° DAY

2 END(TTCOL)>= -2009-09-12 17:00:00.000000° | 1

+ INTERVAL “2° DAY &&

END(TTCOL)< ‘2009-09-12 17:00:00.000000’
+ INTERVAL ‘3° DAY

5 END(TTCOL)>= *2009-09-12 17:00:00.000000° | 1
+ INTERVAL ‘3" DAY J

FIG. 4

U.S. Patent Oct. 13, 2015 Sheet 3 of 13 US 9,158,802 B2
Logical Partition | Condition
Number
1 END(VTCOL)>= CURRENT DATE AND END(TTCOL)>=

CURRENT TIMESTAMP 510

2 END(VTCOL)< CURRENT DATE AND END(TTCOL)>=
CURRENT TIMESTAMP

3 END(TTCOL)< CURRENT TIMESTAMP

FIG. 5

U.S. Patent

Oct. 13, 2015

Sheet 4 of 13

US 9,158,802 B2

620

Level 1 Physical
Partition Number
(by
TransactionTime)

Level 2
Physical
Partition
Number
(by
ValidTime)

Condition

Logical
Partition
Number

1

END(TTCOL)>— ‘2009-09-07
16:00:00.000000” && END(TTCOL)<
2009-09-07 16:00:00.000000° -
INTERVAL ‘1”7 DAY

&&

END(VTCOL)>= ‘2009-09-07"
&&END(VTCOL)< 2009-09-07"+
INTERVAL ‘1" DAY

END(TTCOL)>= 2009-09-07
16:00:00.000000” && END(TTCOL)<
2009-09-07 16:00:00.000000" —
INTERVAL ‘1" DAY

&&

END(VTCOL)>= ‘2009-09-07" +
INTERVAL ‘1" DAY
&&END(VTCOL)< 2009-09-07"+
INTERVAL ‘2" DAY

END(TTCOL)>= 2009-09-07
16:00:00.000000° && END(TTCOL)<
2009-09-07 16:00:00.000000° -
INTERVAL ‘1" DAY

&&

END(VTCOL)>= ‘2009-09-07" +
INTERVAL ‘2" DAY

END(TTCOL)>= “2009-09-07
16:00:00.000000" + INTERVAL ‘1’ DAY
&& END(TTCOL)< 2009-09-07
16:00:00.000000" + INTERVAL ‘2° DAY
&&

END(VTCOL)>= 2009-09-07" &&
END(VTCOL)< ‘2009-09-07"—
INTERVAL ‘1" DAY

END(TTCOL)>— ‘2009-09-07
16:00:00.000000" + INTERVAL ‘1’ DAY
&& END(TTCOL)< 2009-09-07
16:00:00.000000" + INTERVAL ‘2° DAY
&&

END(VTCOL)>= ‘2009-09-07" +
INTERVAL ‘1’ DAY

&&END(VTCOL)< 2009-09-07"+
INTERVAL ‘2" DAY

FIG. 64

U.S. Patent

Oct. 13,2015 Sheet 5 of 13

END(TTCOL)>= "2009-09-07 16:00:00.000000" +
INTERVAL 2’ DAY

&&

END(VTCOL)>= 2009-09-07" &&END(VTCOL)<
2009-09-07’+ INTERVAL ‘1" DAY

US 9,158,802 B2

/ 620

END(TTCOL)>= 2009-09-07 16:00:00.000000° +
INTERVAL 2 DAY

&
END(VTCOLP= ‘2009-09-07" + INTERVAL 1" DAY
&

END(VTCOL)< ‘2009-09-07'+ INTERVAL ‘2" DAY

FiIG. 6B

END(TTCOL)>= ‘2009-09-07 16:00:00.000000° +
INTERVAL 2’ DAY

&&

END(VTCOL)>= 2009-09-07’ + INTERVAL 2° DAY

U.S. Patent Oct. 13,2015

Sheet 6 of 13
Level 1 Physical | Level 2 Condition Logical
Partition Number | Physical Za"“g"”
(by Partition umboer
TransactionTime) | Number
(by
ValidTime)
1 1 END(TTCOL)>= *2009-09- | 3%
D7 16:00:00.000000° && | change
END(TTCOL)< *2009-09-07 | from 1
16:00:00.000000° | to 3
INTERVAL *1° DAY
&&
END(VTCOL)>= *2009-09-
07’ &&END(VTCOL)<
*2009-09-07°+ INTERV AL
‘1’ DAY
2 END(TTCOL)>= "2009-09- | 39
D7 16:00:00.000000° && | change
END(TTCOT)< “2009-09-07 | from 1
16:00:00.000000" + to 3
INTFRVAL *1’ DAY
&&
END(VTCOT)>= ‘2009-09-
07° + INTFRVAL *1” DAY
&&FND(VTCOT)< 2009-
09-07°+ INTFRVAT, 2’
DAY
3 END(TTCOT)>=2009-09- | 3 &
07 16:00:00.000000° && | change
END(TTCOT)< “2009-09-07 | from 1
16:00:00.000000" + to3
INTFRVAL *1’ DAY
&&
END(VTCOL)>= ‘2009-09-
07' + INTERVAL 2’ DAY
2 1 END(TTCOT)>= "2009-09- | 2
07 16:00:00.000000” + change
INTFRVAL *1’ DAY from 1
&& END(TTCOL)< 2009- | to 2
09-07 16:00:00.000000" +
INTERVAL 2’ DAY
&&
END(VTCOL)>= ‘2009-09-
07" && END(VTCOL)<
*2009-09-07"+ INTERVAL
‘I’ DAY
2 END(TTCOL)>= “2009-09- | 29
07 16:00:00.000000" + change
INTERVAL ‘1’ DAY from 1
&& END(TTCOL)< ‘2009- | to 2

FiIG. 74

US 9,158,802 B2

730

U.S. Patent Oct. 13, 2015 Sheet 7 of 13 US 9,158,802 B2

09-07 16:00:00.000000° +
INTERVAL ‘2’ DAY

&&

END(VTCOL)>= “2009-09-07" +
INTERVAL ‘1" DAY
&&END(VTCOL)< 2009-09-
07+ INTERVAL *2° DAY

END(TTCOL)>= ‘2009-09-07
16:00:00.000000° + INTERVAL
‘17 DAY

&& END(TTCOL)< 2009-09-07
16:00:00.000000" + INTCRVAL
2’ DAY

&&

END(VTCOL)>— “2009-09-07" +
INTERVAL ‘2" DAY

3 1 END(TTCOL)>= ‘2009-09-07 2
change

16:00:00.000000" + INTERVAL from 1
2" DAY to 2
&&

END(VTCOL)>= 2009-09-07’
&&END(VTCOL)< 2009-09-
07+ INTERVAL ‘1’ DAY

2 END(TTCOL)>= ‘2009-09-07 | 2—>
16:00:00.000000” + INTERVAL | change
‘2" DAY from 1
&& to 2
END(VICOL)>= *2009-09-07" +
INTERVAL ‘1’ DAY

&&

END(VICOL)< 2009-09-07"+
INTERVAL ‘2’ DAY

END(TTCOL)>= “2009-09-07 1
16:00:00.000000" + INTERVAL
2” DAY

&&

END(VTCOL)>= “2009-09-07" +
INTERVAL ‘2’ DAY

FiG. 7B

U.S. Patent

US 9,158,802 B2

840

16:00:00.000000° +
INTERVAL ‘1’ DAY
&&

END(VTCOL)>= *2009-
09-07°
&&END(VTCOL)<
2009-09-12’

Oct. 13, 2015 Sheet 8 0of 13
Level 1 Physical | Level 2 Condition Logical
Partition Number | Physical Partition
(by Partition Number
TransactionTime) | Number
(by
ValidTime)
1 1 END(TTCOL)>=“2009- | 3
09-07 16:00:00.000000° =2 combine
&& END(TTCOL)< all closed
2009-09-12 rows in old
16:00:00.000000’ partition
&& 11,241,
END(VTCOL)>= 2009- | 3.1°
09-07°
&&END(VTCOL)<
‘2009-09-07"+
INTERVAL ‘1’ DAY
2 END(TTCOL)>= 2009- | 39
09-07 16:00:00.000000° | combine
&& END(TTCOL)< all closed
2009-09-12 rows in old
16:00:00.000000’ partition
&& 1.2,2.2,
END(VTCOL)>= ‘2009- | 3.2
09-07° + INTERVAL ‘1’
DAY
&&
END(VTCOL)< 2009-
09-07°+ INTERVAL ‘2’
DAY
3 END(TTCOL)>= “2009- | 39
09-07 16:00:00.000000° | combine
&& END(TTCOL)< all closed
€2009-09-12 row in old
16:00:00.000000° partition
&& 1.3,2.3,
END(VTCOL)>= “2009- | 3.3
09-07" + INTERVAL “2’
DAY
2-%create a new 1=»create a | END(TTCOL)>- 2009- | 2 =» add
partition new sub- 09-12 16:00:00.000000° | mapping for
partition && END(TTCOL)< the new
2009-09-12 partition

*m.n means partition m, sub-partition n

FIG. 84

U.S. Patent

Oct. 13, 2015

Sheet 9 of 13

US 9,158,802 B2

2—create a
new partition

2—create a
new sub-
partition

END(TTCOL)>= ‘2009-
09-12 16:00:00.000000”
&& END(TTCOL)<
“2009-09-12
16:00:00.000000" +
INTERVAL ‘1° DAY
&&

END(VTCOL)>= “2009-
09-12° &&END(VTCOL)<
2009-09-12"+
INTERVAL ‘1° DAY

1 —>add
mapping for
the new
partition

3—create a
new sub-
partition

END(TTCOL)>= “2009-09-
12 16:00:00.000000”

&& END(TTCOL)< 2009-
09-12 16:00:00.000000 +
INTERVAL ‘1’ DAY

&&

END(VTCOL)>= ‘2009-09-
12 + INTERVAL ‘1° DAY

1— add
mapping for
the new
partition

END(TTCOL)>= *2009-
09-12 16:00:00.000000” +
INTERVAL ‘1° DAY

&&

END(VTCOL)>= “2009-
09-07" &&END(VTCOL)<
“2009-09-12

END(TTCOL)>= ‘2009-
09-12 16:00:00.000000° +
INTERVAL ‘1’ DAY

&&

END(VTCOL)>= “2009-
09-12’ &&
END(VTCOL)< ‘2009-09-
12’+ INTERVAL ‘I’ DAY

1—change
the
mapping to
1

END(TTCOL)>= “2009-
09-12 16:00:00.000000° +
INTERVAL ‘1’ DAY

&&

END(VTCOL)>= 2009-
09-12> + INTERVAL ‘1’
DAY

*m.n means partition m, sub-partition n

FiIG. 8B

840

U.S. Patent Oct. 13,2015

/921

SELECT PARTITIONS

A 4 / 925

RECEIVE MOVE
REQUEST

AT LEAST ONE
PARTITION HAS ONLY
HISTORY ROWS?

937
MOST RECENT DATA

Sheet 10 of 13

/911

PARTITION HAS ANY
HISTORY ROWS?

A 4

US 9,158,802 B2

/ 941
COMBINE
PARTITIONS AND
CREATE NEW
PARTITION

UPDATE MAPPING
(BLOCK WRITES)

/ 945

A

PUBLISH TABLE

/ 949

y

INCREASE UPDATE
FREQUENCY

/ 953

FIG. 9

U.S. Patent Oct. 13, 2015 Sheet 11 of 13 US 9,158,802 B2

/ 1011

/ 1021

CREATE VIRTUAL
PARTITION

v

/ 1025
RECEIVE MOVE |[¢&—
REQUEST

1033

AT LEAST ONE
PARTITION HAS ONLY
HISTORY ROWS?

1037

MOST RECENT DATA
PARTITION HAS ANY
HISTORY ROWS?

1041
COMBINE / y
SUB-PARTITIONS AND 1045
CREATE NEW —» UPDATE MAPPING /
PARTITION l

/ 1049
DECREASE

PARTITION TIME
INTERVAL

FIG. 10

U.S. Patent Oct. 13, 2015 Sheet 12 of 13 US 9,158,802 B2
1160
1142
1142 DISPLAY [+
DISPLAY
ROWS 1116
3\ Yy
1144 .[
1102 < 1102
NODE_1 NODE_2
1120 < »
CPU N
£ 1102
T NODE_11
3 W
1154
- ol STORAGE
1122 R [« >
MEMORY K _~] TABLE
1148 1152
MAP KT
1102
1152 NODE_N 130
TABLE _~}
PROCESSING
A
y
1126
DEVICE B
A
y 1142
1198 PN DISPLAY
RECEPTION 1126 1144
DEVICE ROWSH
\ 4
1130 REQ ~ 1156
PROCESSING
A J A\ J
Y Y

1100

FIG. 11

1100

U.S. Patent Oct. 13, 2015 Sheet 13 of 13 US 9,158,802 B2

1200
1202 4
/
PROCESSOR
1204 — [———>»] l————> VIDEO —
DISPLAY 1228
1212 —HINSTRUCTIONS
MAIN MEMORY
1220 — <> [npuTDEVICE [1232
1212 —HINSTRUCTIONS
1216 —
STATIC MEMORY CURSOR
1212 —HINSTRUCTIONS DEVICE
STORAGE
NETWORK MACHINE- ||~ 1206
1240 — INTERFACE |l€—— | |e——»|| READABLE I 45ng
MEDIUM
DEVICE
INSTRUCTIONSHI—~ 1212
1244

FIG. 12

US 9,158,802 B2

1
DATABASE PARTITION MANAGEMENT

CLAIM OF PRIORITY

This application is a divisional of and claims the benefit of
priority under 35 U.S.C. 120 to U.S. patent application Ser.
No. 12/968,736, filed on Dec. 15, 2010, which is hereby
incorporated by reference herein in its entirety.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The following notice applies to the example code, screen
shots, and images described below, and in any drawings
appended hereto: Copyright 2010 Teradata, Inc. of Miamis-
burg, Ohio—All Rights Reserved.

BACKGROUND

It is not uncommon to see the amount of data associated
with a business venture grow at an exponential pace. The
growing amount of data is often stored in a database to enable
convenient management. In some cases, temporal semantics
are supported so that the data can be stored and manipulated
along with associated valid time (VT) and transaction time
(TT) information, perhaps as part of a relational database.
Thus, over time, the amount of stored data may greatly
increase, along with the overall query response time of the
data management system.

To increase efficiency, as the data ages, non-current data
may be moved within the system, perhaps using periodic
requests that transition older database rows from the current
partition to a history partition. This type of physical data
movement can consume system resources, and further slow
down the system query response time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates logical partitions for a transaction table
created according to various embodiments of the invention.

FIG. 2 illustrates physical to logical partition mapping for
atransaction table created according to various embodiments
of the invention.

FIG. 3 illustrates updated physical to logical partition map-
ping for a transaction table according to various embodiments
of the invention.

FIG. 4 illustrates physical partition combination and
updated physical to logical partition mapping for a transac-
tion table according to various embodiments of the invention.

FIG. 5 illustrates logical partitions for a bi-temporal table
created according to various embodiments of the invention.

FIGS. 6A, 6B illustrate physical to logical partition map-
ping for a bi-temporal table created according to various
embodiments of the invention.

FIGS. 7A, 7B illustrate updated physical to logical parti-
tion mapping for a bi-temporal table according to various
embodiments of the invention.

FIGS. 8A, 8B illustrate physical partition combination and
updated physical to logical partition mapping for a bi-tempo-
ral table according to various embodiments of the invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 is a flow diagram illustrating several methods of
database partition management according to various embodi-
ments of the invention.

FIG.101s a flow diagram illustrating additional methods of
database partition management according to various embodi-
ments of the invention.

FIG. 11 is a block diagram of apparatus and systems
according to various embodiments of the invention.

FIG. 12 is a block diagram of an article of manufacture,
including a specific machine, according to various embodi-
ments of the invention.

DETAILED DESCRIPTION

When the database update frequency is high, the amount of
history data in the current partition can increase relatively
quickly. This may result in degraded query performance,
perhaps indicated by an increasing amount of time used to
process SQL “CURRENT” query statements.

To increase operational efficiency, the Database Adminis-
trator may thus periodically submit requests to transition
older rows from the current partition to a history partition.
This is often referred to by those of ordinary skill in the art as
a“lazy move” operation. For example, when structured query
language (SQL) is used, this can often be accomplished via
the “ALTER TABLE . . . TO CURRENT” SQL statement.

To maintain operational efficiency, history data is moved
out of the current partition as often as possible. Practically,
such activity is reserved for non-peak business hours, or
backend operations. This is because conventional lazy move
operations are implemented by physically removing older
data from the current partition, and then inserting the
removed data into the history partition. Due to the relatively
high input/output (I/O) resource cost, this activity can greatly
affect overall system operations.

To address some of these challenges, among others, many
embodiments operate to make use of virtual partitioning:
mapping from a physical partition (the actual partition used to
store data on the disk) to a logical partition (defined by the
partition expression in a SQL. CREATE TABLE statement,
for example). When accomplished as described herein, most
lazy move operations involve only a change in mapping from
physical partitions to logical partitions, without moving data.
This type of operation can greatly reduce the /O cost ofalazy
move operation.

Physical partitions are the actual partitions used to store
data on the disk. Logical partitions are defined by the user—
they can be apportioned in various ways, as either current or
history partitions. In many cases, some logical partitions
belong to a history partition, and the rest belong to the current
partition. Sometimes there is historical data in the current
partition. The logical partitions may thus be apportioned
between a “current partition” and a “history partition”, which
can be defined in the partition expression clause in a SQL
CREATE TABLE statement, for example.

To establish some concrete examples of logical partition-
ing, it may be noted that a Valid Time (VT) database table can
have rows that are either valid (current or future) or no longer
valid. Therefore, it can be useful to logically partition a VT
table into two sets: a set of valid rows (called the current
partition) and a set of no-longer-valid rows (called the history
partition).

Similarly, for a Transaction Time (TT) table, rows may be
either open or closed. Therefore, it can be useful to logically
partition a TT table into two sets: aset of openrows (called the
current partition) and a set of closed rows (called the history
partition).

US 9,158,802 B2

3

Finally, for a bi-temporal table, it can be useful to logically
partition the table into three sets: a set of valid (current and
future) rows that are open (called the current partition), a set
of'no-longer-valid and open rows (called the TTOpenVTHis-
tory partition in some embodiments), and a set of closed rows
(called the TTHistory partition in some embodiments).

In accordance with these principles, two examples of data-
base partition management are provided as example embodi-
ments. The first, shown in FIGS. 1-4, makes use of a TT table.
The second, shown in FIGS. 5-8, makes use of a bi-temporal
table.

Consider now the first example, which makes use of a TT
table. A set of SQL statements may be used to create and
partition the TT table “Orders” as follows:

CREATE MULTISET TABLE Orders, NO FALLBACK

(

Order__number INTEGER,
TTCOL PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT
NULL AS TRANSACTIONTIME)

PRIMARY INDEX (Order_ number)

PARTITION BY CASE_ N (END(TTCOL)>=
CURRENT__TIMESTAMP, NO CASE);

As afirst activity, and part of the table creation, one chooses
the number of physical partitions, for example, five in this
case. Any number of partitions can be chosen. In some
instances, a useful and approximate maximum number may
be calculated as:

Number of physical partitions~=(Expected maximum
lifetime of a database table)/(Frequency of lazy
move requests).

For example, if a database table was created on 2000-01-01
and is expected to be used for 30 years (until 2030-01-01),
with a frequency of lazy move requests being about once per
week, then the number of physical partitions might be chosen
as 30%52/1=1560. When the total number of physical parti-
tions is chosen to be equal to or greater than this number of
physical partitions, actual data movement may be almost
entirely avoided in various embodiments.

If the total number of physical partitions is less than the
calculated number of physical partitions, the number chosen
will determine how frequently physical data movement
occurs. The larger the number of physical partitions, the less
frequently physical data movement occurs (such as when
remapping the logical partitions alone does not serve to
accommodate a lazy move request).

As a second activity, the TT table may be partitioned by
day, month, year, or any other chosen interval, usually
depending on the business data update frequency. In this
example, partition “by day” may be assumed.

Dirty data is a phrase that refers to misleading or incorrect
data, such as outdated data that has been collected as partofa
database. For the purposes of this document, “dirty data”
means history data that remains in current partitions. As will
be seen later (refer to the fifth activity for the TT table, below),
data dirtiness in a partition reduces the query performance in
current time. Data dirtiness is often impacted by two factors,
approximately as follows:

Data dirtiness~(Interval of partitioning)* (Business
data update frequency per interval).

Thus, the amount of dirtiness in the database is propor-
tional to the partitioning time interval and the data update
frequency per partitioning time interval. The larger the parti-
tion interval is, the dirtier the data will be. The more fre-
quently the business data is updated, the dirtier the data will

15

20

25

30

40

45

60

4

be. Therefore, to control the level of data dirtiness, the parti-
tion interval should be reduced in size when the business data
is updated more frequently.

As a third activity, a physical partition number is assigned
to each TT table interval until numbers have been assigned to
all of the physical partitions. The numbers can be assigned to
the physical partitions as ordered integers, with the least-
valued number being assigned to the physical partition that
will hold the oldest data, and the greatest-valued number
being assigned to the physical partition that will hold the most
recent data. This latter partition can thus be interchangeably
referred to as the physical partition assigned to receive the
most recent data, as well as the physical partition having the
highest assigned number in the embodiments described
below.

As afourth activity, virtual partitioning is put in place. This
occurs by mapping the physical partitions to the logical par-
titions.

FIG. 1 illustrates logical partitions 110 for a transaction
table created according to various embodiments of the inven-
tion. In this case, the transaction table “Orders” (created by
the SQL statements given previously) has two logical parti-
tions 110.

FIG. 2 illustrates physical to logical partition mapping 220
for a transaction table created according to various embodi-
ments of the invention. For example, suppose the table
“Orders” was created on date 2009-09-07, at time 16:00:
00.000000. At that time, the virtual partition might be as
shown in FIG. 2.

As part of a fifth activity, FIG. 3 illustrates updated physi-
cal to logical partition mapping 330 for a transaction table
according to various embodiments of the invention. For
example, if a lazy move request was issued on date 2009-09-
09, at time 09:53:00.000000, only the virtual partitioning of
the table would be changed. Physical data movement would
not be required.

Thus, the mapping of physical partition 1 is updated from
logical partition 1 to logical partition 2. For physical partition
2, even though part of the data in this partition should be
mapped to logical partition 2, the mapping is not updated until
all of the data within the partition is dirty (i.e., all of the data
in the physical partition 2 has become history rows). There-
fore, the physical partition 2 remains mapped to logical par-
tition 1, even though it already contains some history rows.
Thus, the virtual partitioning 330 of the transaction table after
a lazy move operation requested on date 2009-09-09, at time
09:53:00.000000 might be as shown in FIG. 3.

The penalty for refraining from remapping physical parti-
tion 2 in this case is a small one, limited by the granularity of
the solution. By choosing an appropriate time interval for the
partition granularity, the data dirtiness (e.g., the percentage of
history data remaining inside a CURRENT partition) within
a physical partition is controlled, being limited to some
desired amount.

FIG. 4 illustrates physical partition combination and
updated physical to logical partition mapping 440 for a trans-
action table according to various embodiments of the inven-
tion. Thus, when it is determined that the physical partition
having the highest assigned number in the database contains
at least one history row, the next lazy move operation can be
used to physically move data. This condition may be more
efficient to test in some embodiments, because the data in a
single physical partition (i.e., the physical partition having the
highest assigned number, or assigned to receive the most
recent data, as described below) can be checked, rather than
checking all the other partitions.

US 9,158,802 B2

5

During the lazy move operation, all writing to the table is
blocked, while reading is allowed. Because of these circum-
stances, various embodiments that usually operate without
physical data movement provide relatively rapid response.
The exception is on the occasion where physical data move-
ment occurs. Then the lazy move operation will take longer,
and the blackout time for the user updates (i.e., the time when
writing is blocked) is longer.

To accomplish this sixth activity, the database system can
operate to combine all of the history data in the physical
partitions numbered 1-5 (see FIG. 3) into a combined physi-
cal partition 442. In this case, all of the data in physical
partitions 2-4 are moved into physical partition 1, and the data
in physical partition 1 don’t need to move. If part of the data
in partition 5 has become history data, this history data is also
moved to physical partition 1. The rest of partition 5 is current
data, and remains in partition 5.

Next, three new partitions are created, and numbered 2-4.
The condition associated with physical partitions 1-4 is
updated accordingly. The condition of partition 5 is updated
as well and all the current data remains in partition 5.

The virtual partitioning is updated accordingly. That is, the
new (combined) physical partition 442 (physical partition 1)
is mapped to logical partition 2. The remaining physical par-
titions 444 are all mapped to logical partition 1. For example,
if a lazy move request was issued on date 2009-09-12, at time
17:00:00.000000, the result of the mapping 440 after the
operation might be as shown in FIG. 4.

Thus, in FIG. 3, it can be seen that when a lazy move
request is issued, only the mapping from physical partitions to
logical partitions is changed, without underlying physical
data movement. When SQL. CURRENT query statements are
used afterward, performance improves because data dirtiness
is decreased, reducing the number of unnecessary 1/O opera-
tions that can be introduced by reading additional history
data.

As a matter of contrast, when the situation illustrated in
FIG. 4 appears (i.e., a lazy move request is received when the
physical partition having the highest assigned number con-
tains at least one history row), history data is physically
moved from physical partitions 2-5, into physical partition 1.
Since most of time the data move can be accomplished for one
partition as a whole (such as partition 2-4), block-level opti-
mization may be employed in some embodiments.

Thus, in various embodiments, the overhead of lazy move
operations with respect to physical data movement is avoided
for some period of time—until the physical partition having
the highest assigned number (e.g., the physical partition
assigned to receive the most recent data) contains at least one
history row. Then physical movement of history data occurs,
and performance is temporarily reduced. Afterward,
improved performance is once again achieved. Other embodi-
ments may be realized.

Consider now the second example, which makes use of a
bi-temporal table. This example illustrates that various
embodiments can employ partitioning along both TT and VT
dimensions using the techniques described previously. In
some embodiments, a two-level physical partition can be built
with TT as the outer level, and VT as the inner level, using a
multi-level PPI.

Other physical partitions may also be used. For example, a
two-level physical partition with VT at the first level, and TT
at the second level. Even a flattened, one-level physical par-
tition is possible. This might occur, for example, when a table
is defined with logical partitions at two levels, and the storage
system uses a single level of physical partitions.

10

15

20

25

30

35

40

45

50

55

60

65

6

Inthe second example, a two level physical partition model
is constructed for a bi-temporal table “BiOrders”, perhaps
created using the following SQL statements:

CREATE MULTISET TABLE BiOrders, NO FALLBACK
(
Order__number INTEGER,
VTCOL PERIOD(DATE) AS VALIDTIME NOT NULL,
TTCOL PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT
NULL AS TRANSACTIONTIME)
PRIMARY INDEX (Order_ number)
PARTITION BY CASE_ N(
END(VTCOL)>= CURRENT__DATE AND END(TTCOL)>=
CURRENT__TIMESTAMP,
END(VTCOL)< CURRENT__DATE AND END(TTCOL)>=
CURRENT_TIMESTAMP,
END(TTCOL)< CURRENT_ TIMESTAMP);

In a first activity, the desired number of physical partitions
is selected for both the TT dimension, and the VT dimension.
For simplicity, assume each is separated into three physical
partitions.

As a second activity, on a first level, the TT dimension is
partitioned by day, month, year, or any other useful interval,
depending on the business dataupdate frequency. In this case,
as before, let the partition interval “by day” be chosen. On a
second level, the VT dimension can also be partitioned as
desired. For simplicity, let the partition interval “by day” be
chosen for this dimension as well.

As a third activity, a physical partition number is assigned
to each TT interval until the maximum number of partitions is
reached. This is also done for the second level—in this case,
the VT dimension.

As a fourth activity, a map is built, to map from the logical
partition number(s), to the physical partition numbers.

FIG. 5 illustrates logical partitions 510 for a bi-temporal
table created according to various embodiments of the inven-
tion. In this case, the bi-temporal table “BiOrders” (created
using the SQL statements given previously) has three logical
partitions 510.

FIGS. 6A, 6B illustrate physical to logical partition map-
ping 620 for a bi-temporal table created according to various
embodiments of the invention. For example, suppose the table
“BiOrders” was created on date 2009-09-07, at time 16:00:
00.000000. Assuming no history data exists before the table
creation time, the virtual partition mapping 620 at that time
might be as shown in FIG. 6.

FIGS. 7A, 7B illustrate updated physical to logical parti-
tion mapping 730 for a bi-temporal table according to various
embodiments of the invention. For example, if a lazy move
request was issued on date 2009-09-09, at time
09:53:00.000000, only the virtual partitioning of the table
would be changed. That is, the mapping of all the sub-parti-
tions in partition 1 would be updated to logical partition 3.
Similarly, the mapping of physical partition 2/sub-partition 1,
physical partition 2/sub-partition 2, physical partition 3/sub-
partition 1, and physical partition 3/sub-partition 2 would be
updated to logical partition 2.

FIGS. 8A, 8B illustrate physical partition combination and
updated physical to logical partition mapping 840 for a bi-
temporal table according to various embodiments of the
invention. In this case, when the maximum chosen partition
number of the outer level is found to hold historical data, the
corresponding sub-partitions of all the partitions (physical
partition 1 and physical partition 2, and history data in physi-
cal partition 3) are combined, and logical partition 1 is
assigned to the combined physical partition. Then logical
partition 2 is assigned to the newly-created physical partition.

US 9,158,802 B2

7

As amore concrete example, assume a lazy move request is
issued on 2009-09-12 at time 16:00:00.000000. When it is
determined that at least one sub-partition of the outer level
partition having the highest assigned number contains closed
rows, physical data movement is triggered.

In this case, the database system may operate to: (a) com-
bine the corresponding sub-partitions of physical partition 1,
partition 2, and history data (closed rows) in partition 3, (b)
assign logical partition 1 to the combined physical partition,
and (c) change the associated condition (in this case, the
condition in the third column) to match the combined parti-
tion.

Next all the invalid open rows in partition 3 (including
partition 3/sub-partition 1, partition 3/sub-partition 2 and
invalid open rows in partition 3/sub-partition 3) will be rolled
over to partition 3/sub-partition 1, and all the valid open rows,
which should only be found in partition 3/sub-partition 3 will
remain in partition 3/sub-partition3. The condition associated
with all the sub-partitions in partition 3 will also be updated
accordingly. The condition associated with all the sub-parti-
tions in partition 3 will take into consideration the new par-
tition 2, as described later.

Physical partition 3/sub-partition 1 is designed to cover the
end of TransactionTime starting from CURRENT TIMES-
TAMP(2009-09-12 16:00:00.000000) plus one day and cover
the end of ValidTime from the table creation time(2009-09-
07) to CURRENT DATE(2009-09-12). Physical partition
3/sub-partition 2 is designed to cover the end of Transaction-
Time starting from CURRENT TIMESTAMP(2009-09-12
16:00:00.000000) plus one day and cover the end of Valid-
Time for one day duration starting from CURRENT DATE
(2009-09-12). Physical partition 3/sub-partition 3 is designed
to cover the end of TransactionTime starting from CUR-
RENT TIMESTAMP(2009-09-12 16:00:00.000000) plus
one day and cover the end of ValidTime starting from CUR-
RENT DATE(2009-09-12) plus one day. The mapping of all
the sub-partitions in physical partition 3 to a logical partition
is updated when needed.

For the bi-temporal table shown, physical partition 1/sub-
partition 1+physical partition 2/sub-partition 1+closed rows
in physical partition 3/sub-partition 1—(are assigned to) new
physical partition 1/sub-partition 1. In addition, physical par-
tition 1/sub-partition 2+physical partition 2/sub-partition
2+closed rows in physical partition 3/sub-partition 2—(are
assigned to) new physical partition 1/sub-partition 2. Finally,
physical partition 1/sub-partition 3+physical partition 2/sub-
partition 3+closed rows in physical partition 3/sub-partition
3—(are assigned to) new physical partition 1/sub-partition 3.

Next, the system may operate to create a new physical
partition, which is assigned to logical partition 2. As part of
this activity, the following may be involved.

The new partition 2, including all its sub-partitions, are
created with the anticipation that after a day or two the data-
base will generate some closed rows or invalid open rows that
fall into the condition defined, The virtual partitioning will be
updated when a lazy move request is received at that time.

Thus, physical partition 2/sub-partition 1—(is assigned to)
END(TT) is between date 2009-09-12, time
16:00:00.000000 and (‘2009-09-12 16:00:00.000000°+IN-
TERVAL ‘1’ DAY) and END(VT), between date 2009-09-07
and date 2009-09-12. Physical partition 2/sub-partition 1 is
designed to cover the end of TransactionTime for one day
duration starting from CURRENT TIMESTAMP(2009-09-
12 16:00:00.000000) and cover the end of ValidTime from the
table creation time(2009-09-07) to CURRENT DATE(2009-
09-12). Physical partition 2/sub-partition2—(is assigned to)
END(TT) is between date 2009-09-12, time

10

15

20

25

30

35

40

45

50

55

60

65

8

16:00:00.000000 and (2009-09-12 16:00:00.000000° +IN-
TERVAL ‘1’ DAY) and END(VT), between date 2009-09-12
and (°2009-09-12°+INTERVAL ‘1’ DAY). Physical partition
2/sub-partition 2 is designed to cover the end of Transaction-
Time for one day duration starting from CURRENT TIMES-
TAMP(2009-09-12 16:00:00.000000) and cover the end of
ValidTime for one day duration starting from CURRENT
DATE(2009-09-12). Physical partition 2/sub-partition 3—(is
assigned to) END(TT) is between date 2009-09-12, time
16:00:00.000000 and (2009-09-12 16:00:00.000000° +IN-
TERVAL ‘1’ DAY) and END(VT) is later than (‘2009-09-
12’+INTERVAL ‘1” DAY). Finally, physical partition 2/sub-
partition 3 is designed to cover the end of TransactionTime for
one day duration starting from CURRENT TIMESTAMP
(2009-09-12 16:00:00.000000) and cover the end of Valid-
Time starting from CURRENT DATE(2009-09-12) plus one
day.

The mapping for all the partitions can be updated accord-
ing to the SQL statement CURRENT DATE/CURRENT
TIMESTAMP(2009-09-12 16:00:00.000000). That is, the
mapping from all the sub-partitions in physical partition 1 are
updated to logical partition 3. Logical partition 2 is assigned
to physical partition 2/sub-partition 1 and physical partition
3/sub-partition 1. Logical partition 1 is assigned to physical
partition 2/sub-partition 2, physical partition 2/sub-partition
3, physical partition 3/sub-partition 2, and physical partition
3/sub-partition 3. The revised virtual partitioning is shown in
FIGS. 8A, 8B.

While a temporal database has been described in the vari-
ous examples, the various embodiments are not to be so
limited. Rather, many embodiments include creating physical
partitions with revised virtual N-to-M partitioning, where N
physical partitions are mapped to M logical partitions, and
where M<N. Thus, in response to receiving a request to move
part of a database table from a current partition to a history
partition, the physical partitioning of the table is simply
remapped to the logical partitioning of the table. The data
itself is not moved in most cases. In this way, physical data
movement is greatly reduced by revising the virtual partition
arrangement.

Thus, many embodiments of the invention may be realized,
and each can be implemented in a variety of architectural
platforms, along with various operating and server systems,
devices, and applications. Any particular architectural layout
or implementation presented herein is therefore provided for
purposes of illustration and comprehension only, and is not
intended to limit the various embodiments.

FIG. 9 is a flow diagram illustrating several methods 911 of
database partition management according to various embodi-
ments of the invention. The methods 911 are implemented in
a machine-accessible and readable medium, and are opera-
tional over processes within and among networks. The net-
works may be wired, wireless, or a combination of wired and
wireless. The methods 911 may be implemented as instruc-
tions, which when accessed by a specific machine, perform
the processing depicted in FIG. 9.

In some embodiments, the method 911 may comprise a
processor-implemented method to execute on one or more
processors that perform the method. The method 911 may
begin at block 921 with selecting the number of physical
partitions that will be used.

As noted previously, the number of physical partitions may
be selected based on the expected lifetime of the table,
divided by the frequency of lazy move requests. Thus, the
activity at block 921 may comprise selecting the number of
physical partitions to be approximately equal to an expected
lifetime of content in the table divided by an expected fre-

US 9,158,802 B2

9

quency of the lazy move request. This is one way in which the
database table may be partitioned into physical partitions
according to a selected mapping update frequency.

The method 911 may continue on to block 925 to include
receiving a request to move at least a portion of a database
table stored on a tangible medium from a current partition to
a history partition. SQL statements can be used to generate a
lazy move request. Thus, the activity at block 925 may com-
prise receiving an “ALTER TABLE” SQL statement.

Mapping may be updated when all of the data stored in a
physical partition becomes history data. Thus, the method
911 may continue on to block 933 to include refraining from
updating the mapping of at least one of the physical partitions
until all data stored in the at least one of the physical partitions
comprises only history rows. If no partition has only history
rows, the method 911 may return to block 925.

Physical partitions can be combined, and created. There-
after, logical partitions can be mapped to a group of physical
partitions that include both partitions that have been com-
bined, and those that have been created.

Thus, the method 911 may continue on to block 937 with
determining whether the physical partition with the highest
assigned number (e.g., the physical partition assigned to
receive the most recent data) has any history rows. If it is a
multi-level physical partition model, the determination can be
made based on whether the physical partition of the outer
level having the highest assigned number (e.g., the outer level
physical partition assigned to receive the most recent data)
contains any history rows. Thus, the method 911 may also
include, at block 937, refraining from creating a new one of
the physical partitions until one of the physical partitions
assigned to receive the most recent data comprises at least one
history row.

If not, then the method 911 may continue on to block 945.
If so, then the method 911 may continue on to block 941 to
include combining at least some of the physical partitions into
a combined physical partition after all but one of the physical
partitions have been moved to the history partition, and cre-
ating at least one new physical partition. The method 911 may
then continue on to block 945.

At block 945, the method 911 may comprise modifying a
logical partitioning of the database table by updating a map-
ping of the physical partitions to logical partitions, in
response to receiving the lazy move request. If partitions have
been combined and created at block 941, then the activity at
block 945 may comprise mapping the logical partitions to the
combined physical partition and at least one new physical
partition.

As part of the activity at block 945, some of the logical
partitions may be designated as the current partition, and
some of the history partition. Thus, the current partition and
the history partition may comprise some of the logical parti-
tions.

When re-mapping of the physical partitions to logical par-
titions occurs, read operations are permitted, but usually not
write operations. Thus, the activity at block 945 may com-
prise permitting read operations and blocking write opera-
tions during the modification of the logical partitions.

Some part of the table that is moved can be shown to the
user on a display. Thus, the method 911 may continue on to
block 949 with publishing some portion of the database table
to a display screen.

The mapping update frequency is how often the logical-to-
physical partition mapping is changed/updated. Increasing
the mapping update frequency should generally decrease the
amount of history data stored in the current partition over
time. Thus, the method 911 may continue on to block 953 to

10

15

20

25

30

35

40

45

50

55

60

65

10

include reducing the percentage of history data stored in the
current partition by increasing the mapping update frequency.

It should be noted that the upper effective limit of the
mapping update frequency is the partitioning time interval.
Thus, assuming that each physical partition covers the dura-
tion of one day, for example, updating the mapping more than
once per day wouldn’t decrease the amount of history in the
partition. Additional embodiments may be realized.

For example, FIG. 10 is a flow diagram illustrating addi-
tional methods 1011 of database partition management
according to various embodiments of the invention. For
example, a table may be created to store data related to par-
ticular time periods, so that the data is not moved when a lazy
move request is received.

Thus, a method 1011 may begin at block 1021 with creat-
ing a virtual partition of a temporal database table including
data associated with valid times and transaction times, by
mapping physical partitions of the table to logical partitions
of the table, wherein the physical partitions are associated
with a selected mapping update frequency.

The table may comprise a bi-temporal table. Multi-level
physical partitions associated with the table can be organized
according to time periods. Thus, the physical partitions may
comprise an outer level and an inner level, such that transac-
tion times are associated with a first one of the inner level or
the outer level, and valid times are associated with a second
one of the inner level or the outer level, using a multi-level
PPL

The method 1011 may continue on to block 1025 with
receiving a lazy move request to move at least a portion of the
data from a current partition to a history partition. If at least
one partition has only history rows, as determined at block
1033, the method may continue on to block 1037. Otherwise,
the method 1011 may return to block 1025.

At block 1037, a determination is made as to whether the
physical partition having the highest assigned number (e.g.,
the physical partition assigned to receive the most recent data)
has any history rows. If it is a multi-level physical partition
model, the determination can be made based on whether the
physical partition of the outer level having the highest
assigned number (e.g., the outer level physical partition
assigned to receive the most recent data) has any history rows.
If this is not the case, then the method 1011 may go on to
update the mapping of the table at block 1045. Otherwise, the
method 1011 may continue on to block 1041.

Multi-level physical partitions can be treated as sub-parti-
tions, which are combined and re-mapped to the logical par-
titions. Thus, the method 1011 may include, at block 1041,
combining at least some sub-partitions of the physical parti-
tions into a combined physical partition, and creating at least
one new physical partition.

The method 1011 may continue on to block 1045 to include
modifying the logical partitions by updating the mapping,
instead of moving the data, in response to receiving the lazy
move request. If the method 1011 operates to combine physi-
cal partitions and create new physical partitions, then the
activity at block 1045 may include mapping the logical par-
titions to the combined physical partition and the at least one
new physical partition. In this case, the data is usually moved.

The number of physical partitions can be greater than the
number of logical partitions. For example, the number of the
physical partitions N may be greater than the number of
logical partitions M, as noted previously.

The partitioning time interval is the time granularity that is
associated with the physical partitions. The smaller the time
interval associated with each physical partition, the less his-
tory data, on average, will be stored in each physical partition.

US 9,158,802 B2

11

A multiple of the partitioning interval and the number of
physical partitions is proportionate to how often the physical
partitions are combined. Thus, the method 1011 may con-
tinue on to block 1049 with reducing a percentage of history
data stored in the current partition by decreasing a partition-
ing time interval.

The methods described herein do nothave to be executed in
the order described, or in any particular order. Moreover,
various activities described with respect to the methods iden-
tified herein can be executed in repetitive, serial, or parallel
fashion. The individual activities of the methods shown in
FIGS. 9 and 10 can also be combined with each other and/or
substituted, one for another, in various ways. Information,
including parameters, commands, operands, and other data,
can be sent and received in the form of one or more carrier
waves. Thus, many other embodiments may be realized.

The methods shown in FIGS. 9 and 10 can be implemented
in various devices, as well as in a computer-readable storage
medium, where the methods are adapted to be executed by
one or more processors. Further details of such embodiments
will now be described.

FIG. 11 is a block diagram of apparatus 1100 and systems
1160 according to various embodiments of the invention.
Here it can be seen that an apparatus 1100 used to implement
database partition management may comprise one or more
processing nodes 1102, one or more processors 1120, memo-
ries 1122, one or more user input devices 1126, a data recep-
tion module 1128, a processing module 1130, and one or
more displays 1142. The apparatus 1100 may comprise a
client, a server, or a networked processing node.

The processing nodes 1102 may in turn comprise physical
machines or virtual machines, or a mixture of both. The nodes
1102 may also comprise networked entities, such servers
and/or clients. In some cases, the operations described herein
can occur entirely within a single node 1102.

In some embodiments then, an apparatus 1100 may com-
prise a data reception module 1128 to receive the lazy move
request, and a processing module 1130 to update the virtual
mapping of the partitions in a table. Thus, an apparatus 1100
may comprise a reception module 1128 to receive a request
1156 to move at least a portion of a database table 1152 stored
on a tangible medium from a current partition to a history
partition. The database table 1152 may be partitioned into
physical partitions of the tangible medium according to a
selected mapping update frequency.

The apparatus 1100 may further comprise a processing
module 1130 to modify a logical partitioning of the database
table 1152 by updating a mapping of the physical partitions to
logical partitions. The map 1148 which is used to record the
mapping of the table 1152 may be stored in a memory 1122.

The data in the table may be made visible to humans, using
a display. Thus, the apparatus 1100 may comprise one or
more displays 1142 to display some rows 1144 of the data-
base table 1152.

The data may be stored at a remote node, rather than
locally. Thus, the apparatus 1100 may comprise a storage
node 1154 that includes the tangible medium on which the
database is stored.

Operations can be divided up into multiple nodes. Thus, the
apparatus 110 may comprise a first node (e.g., NODE_ 1) to
house the reception module 1128, and a second node (e.g.,
NODE_N) to house the processing module 1130.

A data base administrator may operate a user input device
to generate the lazy move request. Thus, the apparatus 1100
may comprise one or more user input devices 1126 to transmit
the request 1156.

10

15

20

25

30

35

40

45

50

55

60

65

12

Still further embodiments may be realized. For example, it
can be seen that a system 1160 that operates to implement
database partition management may comprise multiple
instances of the apparatus 1100. The system 1160 might also
comprise a cluster of nodes 1102, including physical and
virtual nodes. It should be noted that any of the nodes 1102
may include any one or more of the elements explicitly shown
in nodes NODE__ 1, NODE_ 2, NODE_3,...NODE_N.

The apparatus 1100 and systems 1160 may be imple-
mented in a machine-accessible and readable medium that is
operational over one or more networks 1116. The networks
1116 may be wired, wireless, or a combination of wired and
wireless. The apparatus 1100 and system 1160 can be used to
implement, among other things, the processing associated
with the methods 911 and 1011 of FIGS. 9 and 10, respec-
tively. Modules may comprise hardware, software, and firm-
ware, or any combination of these. Additional embodiments
may be realized.

For example, FIG. 12 is a block diagram of an article 1200
of'manufacture, including a specific machine 1202, according
to various embodiments of the invention. Upon reading and
comprehending the content of this disclosure, one of ordinary
skill in the art will understand the manner in which a software
program can be launched from a computer-readable medium
in a computer-based system to execute the functions defined
in the software program.

One of ordinary skill in the art will further understand the
various programming languages that may be employed to
create one or more software programs designed to implement
and perform the methods disclosed herein. The programs may
be structured in an object-oriented format using an object-
oriented language such as Java or C++. Alternatively, the
programs can be structured in a procedure-oriented format
using a procedural language, such as assembly or C. The
software components may communicate using any of a num-
ber of mechanisms well known to those of ordinary skill in the
art, such as application program interfaces or interprocess
communication techniques, including remote procedure
calls. The teachings of various embodiments are not limited to
any particular programming language or environment. Thus,
other embodiments may be realized.

For example, an article 1200 of manufacture, such as a
computer, a memory system, a magnetic or optical disk, some
other storage device, and/or any type of electronic device or
system may include one or more processors 1204 coupled to
a machine-readable medium 1208 such as a memory (e.g.,
removable storage media, as well as any memory including an
electrical, optical, or electromagnetic conductor) having
instructions 1212 stored thereon (e.g., computer program
instructions), which when executed by the one or more pro-
cessors 1204 result in the machine 1202 performing any of the
actions described with respect to the methods above.

The machine 1202 may take the form of a specific com-
puter system having a processor 1204 coupled to a number of
components directly, and/or using a bus 1216. Thus, the
machine 1202 may be similar to or identical to the apparatus
1100 or system 1160 shown in FIG. 11.

Turning now to FIG. 12, it can be seen that the components
of the machine 1202 may include main memory 1220, static
or non-volatile memory 1224, and mass storage 1206. Other
components coupled to the processor 1204 may include an
input device 1232, such as a keyboard, or a cursor control
device 1236, such as a mouse. An output device 1228, such as
a video display, may be located apart from the machine 1202
(as shown), or made as an integral part of the machine 1202.

A network interface device 1240 to couple the processor
1204 and other components to a network 1244 may also be

US 9,158,802 B2

13

coupled to the bus 1216. The instructions 1212 may be trans-
mitted or received over the network 1244 via the network
interface device 1240 utilizing any one of a number of well-
known transfer protocols (e.g., HyperText Transfer Protocol).
Any of these elements coupled to the bus 1216 may be absent,
present singly, or present in plural numbers, depending on the
specific embodiment to be realized.

The processor 1204, the memories 1220, 1224, and the
storage device 1206 may each include instructions 1212
which, when executed, cause the machine 1202 to perform
any one or more of the methods described herein. In some
embodiments, the machine 1202 operates as a standalone
device or may be connected (e.g., networked) to other
machines. In a networked environment, the machine 1202
may operate in the capacity of a server or a client machine in
server-client network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment.

The machine 1202 may comprise a personal computer
(PC), a tablet PC, a set-top box (STB), a PDA, a cellular
telephone, a web appliance, a network router, switch or
bridge, server, client, or any specific machine capable of
executing a set of instructions (sequential or otherwise) that
direct actions to be taken by that machine to implement the
methods and functions described herein. Further, while only
a single machine 1202 is illustrated, the term “machine” shall
also be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies dis-
cussed herein.

While the machine-readable medium 1208 is shown as a
single medium, the term “machine-readable medium” should
be taken to include a single medium or multiple media (e.g.,
acentralized or distributed database, and/or associated caches
and servers, and or a variety of storage media, such as the
registers of the processor 1204, memories 1220, 1224, and the
storage device 1206 that store the one or more sets of instruc-
tions 1212). The term “machine-readable medium” shall also
be taken to include any medium that is capable of storing,
encoding or carrying a set of instructions for execution by the
machine and that cause the machine 1202 to perform any one
or more of the methodologies of the present invention, or that
is capable of storing, encoding or carrying data structures
utilized by or associated with such a set of instructions. The
terms “machine-readable medium” or “computer-readable
medium” shall accordingly be taken to include tangible
media, such as solid-state memories and optical and magnetic
media.

Various embodiments may be implemented as a stand-
alone application (e.g., without any network capabilities), a
client-server application or a peer-to-peer (or distributed)
application. Embodiments may also, for example, be
deployed by Software-as-a-Service (SaaS), an Application
Service Provider (ASP), or utility computing providers, in
addition to being sold or licensed via traditional channels.

Implementing the apparatus, systems, and methods
described herein may operate to dramatically reduce the I/O
operational cost of lazy move operations, and thus, improve
query performance. As a result, database administrators
might be motivated to initiate lazy move operations more
often, with additional gains in performance. Increased effi-
ciency and user satisfaction may result.

This Detailed Description is illustrative, and not restrictive.
Many other embodiments will be apparent to those of ordi-
nary skill in the art upon reviewing this disclosure. The scope
of embodiments should therefore be determined with refer-
ence to the appended claims, along with the full scope of
equivalents to which such claims are entitled.

20

30

40

45

50

14
The Abstract of the Disclosure is provided to comply with
37 C.FR. §1.72(b) and will allow the reader to quickly ascer-
tain the nature of the technical disclosure. It is submitted with
the understanding that it will not be used to interpret or limit
the scope or meaning of the claims.
In this Detailed Description of various embodiments, a
number of features are grouped together in a single embodi-
ment for the purpose of streamlining the disclosure. This
method of disclosure is not to be interpreted as an implication
that the claimed embodiments have more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive subject matter lies in less than all
features of a single disclosed embodiment. Thus the follow-
ing claims are hereby incorporated into the Detailed Descrip-
tion, with each claim standing on its own as a separate
embodiment.
What is claimed is:
1. A processor-implemented method to execute on one or
more processors that perform the method, comprising:
creating a virtual partition of a temporal database table by
mapping physical partitions of the table to logical parti-
tions of the table, wherein the temporal database
includes data associated with valid times and transaction
times, wherein valid times are rows that are either valid
or no longer valid, wherein a valid row references a time
that is current or future to a present time and a no longer
valid row references a time that is past, wherein trans-
action times are rows that are either an open transaction
or a closed transaction, wherein a first portion of the
logical partitions belong to a current partition and a
second portion of the logical partitions belong to a his-
tory partition, wherein the physical partitions are asso-
ciated with a selected mapping update frequency for a
partition mapping update, the partition mapping update
changing the mapping of a physical partition from a
logical current partition to a logical history partition;

receiving a request to move at least a portion of the data
from the current partition to the history partition, the at
least a portion of the data being at least one of valid times
data that is no longer valid or transaction times data that
is closed; and

in response to the receiving, modifying the logical parti-

tions by updating the mapping of the physical partitions
from a logical current partition to a logical history par-
tition, instead of moving the data to other physical par-
titions.

2. A machine-readable medium that is not a transitory
propagating signal, the machine-readable medium including
instructions that, when executed by a machine, cause the
machine to perform operations comprising:

creating a virtual partition of a temporal database table by

mapping physical partitions of the table to logical parti-
tions of the table, wherein the temporal database
includes data associated with valid times and transaction
times, wherein valid times are rows that are either valid
or no longer valid, wherein a valid row references a time
that is current or future to a present time and a no longer
valid row references a time that is past, wherein trans-
action times are rows that are either an open transaction
or a closed transaction, wherein a first portion of the
logical partitions belong to a current partition and a
second portion of the logical partitions belong to a his-
tory partition, wherein the physical partitions are asso-
ciated with a selected mapping update frequency for a
partition mapping update, the partition mapping update
changing the mapping of a physical partition from a
logical current partition to a logical history partition;

US 9,158,802 B2

15

receiving a request to move at least a portion of the data
from the current partition to the history partition, the at
least a portion of the data being at least one of valid times
data that is no longer valid or transaction times data that
is closed; and

in response to the receiving, modifying the logical parti-

tions by updating the mapping of the physical partitions
from a logical current partition to a logical history par-
tition, instead of moving the data.

3. An apparatus, comprising:

a processing module to:

create a virtual partition of a temporal database table by
mapping physical partitions of the table to logical
partitions of the table, wherein the temporal database
includes data associated with valid times and transac-
tion times, wherein valid times are rows that are either
valid or no longer valid, wherein a valid row refer-
ences a time that is current or future to a present time
and a no longer valid row references a time that is past,
wherein transaction times are rows that are either an
open transaction or a closed transaction, wherein a
first portion of the logical partitions belong to a cur-
rent partition and a second portion of the logical par-
titions belong to a history partition, wherein the physi-
cal partitions are associated with a selected mapping
update frequency for a partition mapping update, the
partition mapping update changing the mapping of a
physical partition from a logical current partition to a
logical history partition; and

modify the logical partitions, in response to a request to
move at least a portion of the data from the current
partition to the history partition, by updating the map-
ping of the physical partitions from a logical current
partition to a logical history partition, instead of mov-
ing the data; and

areception module to receive the request to move at least a

portion of a the data from a current partition to a history
partition, the at least a portion of the data being at least
one of valid times data that is no longer valid or trans-
action times data that is closed.

4. The method of claim 1, wherein a number of the physical
partitions N is greater than the number of logical partitions M.

5. The method of claim 1, further comprising:

reducing a percentage of history data stored in the current

partition by decreasing a partitioning time interval.

6. The method of claim 1, wherein the table comprises a
bi-temporal table.

7. The method of claim 1, wherein the physical partitions
comprise an outer level and an inner level, with the transac-
tion times associated with a first one of the inner level or the
outer level, and the valid times associated with a second one
of the inner level or the outer level, using a multi-level pri-
mary partition index.

8. The method of claim 1, further comprising:

combining at least some sub-partitions of the physical par-

titions into a combined physical partition;

10

15

20

25

30

35

40

45

50

55

16

creating at least one new physical partition; and

mapping the logical partitions to the combined physical

partition and the at least one new physical partition.

9. The machine-readable medium of claim 2, wherein a
number of the physical partitions N is greater than the number
of'logical partitions M.

10. The machine-readable medium of claim 2, further
including instructions that, when executed, cause the
machine to perform operations comprising:

reducing a percentage of history data stored in the current

partition by decreasing a partitioning time interval.

11. The machine-readable medium of claim 2, wherein the
table comprises a bi-temporal table.

12. The machine-readable medium of claim 2, wherein the
physical partitions comprise an outer level and an inner level,
with the transaction times associated with a first one of the
inner level or the outer level, and the valid times associated
with a second one of the inner level or the outer level, using a
multi-level primary partition index.

13. The machine-readable medium of claim 2, further
including instructions that, when executed, cause the
machine to perform operations comprising:

combining at least some sub-partitions of the physical par-

titions into a combined physical partition;

creating at least one new physical partition; and

mapping the logical partitions to the combined physical

partition and the at least one new physical partition.

14. The apparatus of claim 3, wherein a number of the
physical partitions N is greater than the number of logical
partitions M.

15. The apparatus of claim 3, wherein the processing mod-
ule is to reduce a percentage of history data stored in the
current partition by decreasing a partitioning time interval.

16. The apparatus of claim 3, wherein the table comprises
a bi-temporal table.

17. The apparatus of claim 3, wherein the physical parti-
tions comprise an outer level and an inner level, with the
transaction times associated with a first one of the inner level
orthe outer level, and the valid times associated with a second
one of the inner level or the outer level, using a multi-level
primary partition index.

18. The apparatus of claim 3, wherein the processing mod-
ule is to:

combine at least some sub-partitions of the physical parti-

tions into a combined physical partition;

create at least one new physical partition; and

map the logical partitions to the combined physical parti-

tion and the at least one new physical partition.

19. The apparatus of claim 3, further comprising:

a storage node that includes the tangible medium.

20. The apparatus of claim 3, further comprising:

a first node to house the reception module; and

a second node to house the processing module.

#* #* #* #* #*

